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On unsteady laminar boundary layers 

By H. A. HASSAN 
Virginia Polytechnic Institute, Blacksburg, Virginia 

(Received 11 April 1960) 

A transformation is introduced which, for a class of outer pressure distributions, 
reduces the unsteady incompressible laminar boundary-layer equations in two 
dimensions to an equation in which the time does not appear explicitly. A form- 
ally exact solution of the resulting equation is then presented in the form of a 
series and it is shown that the solution can be expressed in terms of universal 
functions. 

1. Introduction 
Early attempts to discuss unsteady laminar boundary-layer flows were mainly 

restricted to early phases of a motion starting from rest and to oscillatory 
motions without a mean flow. Very little attention was paid to the subject 
because it was felt that boundary-layer growth took place in such a short time 
that the flow may be considered steady. It is clear that such considerations do 
not apply if one considers the problem of a vehicle moving with variable speed 
over its entire trajectory, and a detailed investigation of unsteady flows is 
required if reliable information concerning skin friction and heat transfer 
is desired. 

Recently Lighthill (1 954) considered the influence of free-stream fluctuations 
on skin friction and heat transfer, and Yang (1958) studied the stagnation point 
flow. Moore (1951) analysed the problem of the laminar compressible boundary 
layer over an insulated flat plate moving with a time dependent velocity and, 
later, Ostrach (1955) extended Moore’s results to the case of an isothermal flat 
plate. 

This paper presents a solution of the problem of unsteady incompressible 
laminar boundary-layer flow for a certain class of outer pressure distributions. 
The method employed makes use of a transformation, a special cme of which was 
given by the author in a recent note (Hassan 1960), which reduces the governing 
equation to an equation in which the time does not appear explicitly. In  spite 
of the fact that such a scheme restricts to a great extent the free-stream velocity 
distributions that can be considered, yet the distribution considered includes, 
as special cases, a number of flows which are of interest. 

It is assumed that the solution has a power series representation and it is 
shown that it can be recast in terms of universal functions. As an example of 
skin-friction calculations, the special case of the assumed flow where the free- 
stream velocity is a function of time is considered. 
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2. Basic equations and transformations 
The differential equation for unsteady incompressible laminar boundary layer 

in two dimensions can be written as 

$zd+ $u $xu - $x $uu = K + vv, + v~uuu, (2.1) 

where $ is the stream function, V is the free-stream velocity and v is the kine- 
matic viscosity. The boundary conditions are 

$45, Y, t) = $&, Y, t) = $AX, Y, t) = 0 at Y = 0, 

$u(., Y, t) + V(X, t) as Y -+ (2.2) 

v = (V/Z) (2Vt/P)""+~~h(S), $ = V(2Vt/P)-+*X(S, c), (2.3) 

and h(s) = saCansn, a, 9 0, a an integer; (2.4) 

Letting 8 = ( X / Z )  (2vt/P)*(*-l), g = y/4(2vt), 

where I is a characteristic length, A is any real or complex number, 
m 

0 

and substituting into (2.1) and (2.2) one finds that 

xuuu + (1 -4 srxu- h'l+ (1 +4 [xu-hl 

+ %7v + xsxmT - xuxsu + hh' = 0, (2.5) 

and x = % = x s = O  at a = 0 ;  %+h(s) as g-tm. (2.6) 

It is seen from (2.3) and (2.4) that the assumed expression for the free-stream 
velocity represents a very special class of V(z,t) .  The assumed expression for 
V makes it necessary for 9 to assume the form given in (2.3) because V = II., 
at infinity. 

Equation (2.6) shows that the boundary conditions depend on h(s). However, 
a substitution which renders the boundary conditions independent of the free- 
stream velocity and paves the way for expressing the solution in terms of uni- 
versal functions can be written as (Hassan 1960) 

k = S ,  q =  cf(4, x = ( h / f ) $ G T ) >  (2.7) 

where f ( f )  = &?(~-1) for a < 0; f ( Q  = 1 for a > 0. (2.8) 

Introducing (2.7) into (2.5) and (2.6), one obtains 

$lT/l + (1/Y2) [I + + (1 -A) (@'PI1 VT/ - 11 
+ (W2) [I+ (1 - 4 (U'/f)I T$T/T/+ (1 - 4 (U2) $57 

+ (1/Y) (W)' $$T/T + (W2) r$& - $T/$fJ 

+ (h'/fZ) (1 - $;) = 0, (2.9) 
and $ = $ T / = q 5 s = 0  at v = O ;  $,,+l as q+m. (2.10) 

3. Solution of equation (2.9) 

be expressible as a3 

The solution of (2.9) in the region of convergence of (2.4) will be assumed to 

$ = Z $n(q)En* (3.1) 
n=O 
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Substituting (2.8) into (2.9) and letting 
m 

l+h+(l-h)(@'/h) = x b,(", bo= l+a+h( l -a ) ,  (3.2) 
n-0 

for n < -a; ( 3 . 5 ~ )  
and 

. -  

%-I= Qn-l+ bn+a-l- I; bk $;+a-k-l- 4bO'V$i+m-l  
k-0 

-(l-h)(n+a-l)$;+a-l for n > -a. (3.5b) 

It is to be understood that, in (3.5a), Qnv1 is identical to the right-hand side 
of the equation for all n, while Rn-l is equal to the right-hand side for restricted 
n w indicated. 

(3.6) 
( 2 )  a = 1: 

$; + -w; - 1 )  + 74: + ao[l+ $o$o" -$A21 = 0, 

#! + ('v +a,$,) 4; + [2 +n(l-h) -ao(n+ 2 )  $;I 4; +ao(n+ 1) & $n = Rn-1 

and 

(n 2 11, (3.7) 
n-1 

where Rn-l = an(n+ l )  [ & 2 - $ O $ o " - 1 1 + a 0  (k+ l )  [$;$;-k-$k+:-kl 
k=l 

I t -  1 

k=l  k- 1 
- $0 5' + l )  $i-k + $; ak(k -t l )  $;-k 

(3)  a > 1: 
4; + 7/yi5o" + [1+ a + h(1  -a)] [$; - 11 = 0, (3.9) 

and $!+rl$i+[l+h+(n+a)(l-h)]$; = Rn-l (n z l ) ,  (3.10) 
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n- 1 

The boundary conditions are -(n+l)a,+l-.a (n > a-2) .  (3.11b) 

+,(O) = &(O) = 0, &(GO) = 1; #,(O) = #A(O) = $;(a) = 0 (n 2 1). (3.12) 

The equations governing the zeroth order term, i.e. (3.3), (3.6) and (3.9), 
will be discussed next. Equation (3.3) can be easily reduced to the well-known 
equation of Falkner and Skan, and its solution was given by Hartree (1937). 
Equation (3.6), which is identical to the equation for unsteady stagnation-point 
flow, has been solved by Yang (1958). Finally, equation (3.9) is a linear equation 
which has a known solution: 

4; = 1 - T' ~ X P  ( - &Y')W,, rn(gv2), (3.13) 

where Wk,rn is the confluent hypergeometric function (Whittaker & Watson 
1927) with k = +b , - f ,  m = 4. (3.14) 

Applying the boundary conditions reduces (3.13) to 

4; = 1 -0XP ( - *Y2) 1 m * ( 1 -  bo), +,8r21, (3.15) 

where 
O0 a(a+l)  ... (a+%-I)%" 

lE;(a'byx) = l + n ? l b ( b + l ) . . .  ( b f n - I )  n?' (3.16) 

The functions #, (n 2 1) are governed by linear equations and can be expressed 
as linear combinations of universal functions for a given a, h and a,. This can 
be accomplished by letting 

41 = ~lf l+alg l+B,~h, ,  

#2 = ~ 2 l f l l + ~ 2 a f 2 + ~ 2 , 9 l l f ~ 2 9 2 + 8 2 , ~ 1 1  + B 2 ~ 2 + ~ 1 ~ 1 r ) l , l + ~ 1 ~ 1 ~ 1 , 1 + B 1 B , $ ~ 1 , , ,  
.,.............. .................................................................... (3.17) 

where a,, = 1 for all n and /?,, = bnF1 for all n 2 1. The governing equations for 
the universal functionsf, g, . . . are obtained by substituting the above equations 
into (3.4), (3.7) and (3.10) and equating coefficients of like constants. The 
boundary conditions satisfied by the universal functions are identical to those 
imposed on 4, (n 2 I), namely, (3.2). 

4. Skin-friction calculations 
The wall shearing stress is given by 

7u = (p/2t)  (2vt/l2)AA hf 5 # l ( O )  t", 

c, = 7u/*pv2 = (2f/h) (2Vt/12)4A 5 # l ( O )  5,. 

(4.1) 

(4.2) 

0 
and, the local skin-friction coefficient is 

0 

As an example of skin-friction calculations, the simple case where h(6) = a, 
will be discussed. I n  this case, 

v = a,(v/Z) (Zvt/Z2)-4(1+", (4.3) 
f = 1/46? b, = l + h ,  b, = 0 ( 1 ~  2 1); (4.4) 



304 H .  A .  Hassun 

and the governing equations are 

$a+*,$,$; = 0, (4.5) 

$ ~ + S ~ o ~ o $ I - ~ o d ; $ ; + ~ ~ , $ , " $ l =  bo[l -$;-47$;1, 
(4.6) 

Letting do = u~*P, $1 = - b,&h,, .. ., 7 = 2 ~ ~ 4 6 ,  (4.7) 

P"+FF" = 0, (4.8) 

(4.9) 

.................................................................. 

we find that (4.5), (4.6) and (3.12) reduce to 

hy + PEi - 2F'h; +- 3F"h1 = - 4(2 - P') + 2@", 

P(0) = F'(0) = 0, F'(co) = 2, h,(O) = hl(0) = h;(a) = 0, .... (4.10) 

Equation (4.8) is the well-known Blasius equation, and (4.9) has been solved by 
Moore (1951). Therefore, one may write 

c, = [+a&-*] (2vt/Z2)4A [P"(O) - (bola,) h;(O) [+ ...I 
= [&~;*[-b] (2vt/Z2)iA [1*328-3*394{(1 +h)/~,}g+ ...I. (4.11) 

For accelerating flows 1 + A  < 0 and (4.11) shows that positive acceleration 

Considering the case of complex h and letting 
causes an increase in skin friction above the 'quasi-steady' value. 

l + h  = u+iw,  (4.12) 
one obtains 

V = u,(v/Z) (2vt/Z2)+exp [ - giwlog (2vt/Z2)] (4.13) 

and C, = +u;h(Z/x)* (2vt/Z2)aUexp [aiwlog(2vt/Z2)] [1.328- ...I. (4.14) 

Equations (4.13) and (4.14) show that the maximum of skin friction is not in 
phase with the maximum of the free-stream velocity. 

5. Concluding remarks 
The transformation that has been introduced makes it possible to give the 

solution of a wide class of unsteady flow problems without resorting to approxi- 
mate methods. The method of solution gives a unified presentation to a number 
of special cases discussed in the literature and reduces the actual solution for 
a given problem to a solution of a few linear differential equations. 

It should be noted, however, that although the method is well suited to 
problems in which V(z ,  t )  N xntm, it fails if V(x ,  t )  N f(z) F(t),  where f and P are 
arbitrary functions. 
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